【題目】綜合與實踐

觀察猜想

如圖1,有公共直角頂點的兩個不全等的等腰直角三角尺疊放在一起,點上,點.

1)在圖1中,你發(fā)現(xiàn)線段,的數(shù)量關(guān)系是___________,直線,的位置關(guān)系是________.

操作發(fā)現(xiàn)

2)將圖1中的繞點逆時針旋轉(zhuǎn)一個銳角得到圖2,這時(1)中的兩個結(jié)論是否成立?作出判斷并說明理由;

拓廣探索

3)如圖3,若只把有公共直角頂點的兩個不全等的等腰直角三角尺改為有公共頂角為(銳角)的兩個不全等等腰三角形繞點逆時針旋轉(zhuǎn)任意一個銳角,這時(1)中的兩個結(jié)論仍然成立嗎?作出判斷,不必說明理由.

【答案】1,;(2)將圖1中的繞點逆時針旋轉(zhuǎn)一個銳角時,兩個結(jié)論成立.理由見解析;(3)結(jié)論成立;結(jié)論不成立.

【解析】

1)根據(jù)△ABC和△ADE是等腰直角三角形,得到AB=AC,AD=AE,∠A=90°,即可得出結(jié)論;

2)由旋轉(zhuǎn)的性質(zhì)得到∠DAB=EAC.根據(jù)SAS證明△ABD≌△ACE,根據(jù)全等三角形的對應(yīng)邊相等得出BD=CE.延長DB,交CE于點F,交AE于點O.由全等三角形對應(yīng)角相等得到∠ADB=AEC.根據(jù)三角形內(nèi)角和定理和對頂角相等,得到∠OFE=OAD=90°,即可得出結(jié)論.

3)類似(2)可得BD=CE成立,BDCE不成立.

1)∵△ABC和△ADE是等腰直角三角形,∴AB=ACAD=AE,∠A=90°,∴BD=CE,BDCE

故答案為:BD=CE,BDCE

2)將圖1中的△ABC繞點A逆時針旋轉(zhuǎn)一個銳角時,兩個結(jié)論成立.理由如下:

由旋轉(zhuǎn)得:∠DAB=EAC

又∵AB=ACAD=AE,

∴△ABD≌△ACESAS).

BD=CE

如圖,延長DB,交CE于點F,交AE于點O

∵△ABD≌△ACE,

∴∠ADB=AEC

∵∠AOD=EOF

∴∠OFE=OAD

∵∠OAD=90°,

∴∠DFE=90°,即BDCE

3)結(jié)論BD=CE成立,結(jié)論BDCE不成立.理由如下:

由旋轉(zhuǎn)得:∠DAE=BAC

∴∠DAB=EAC

又∵AB=AC,AD=AE

∴△ABD≌△ACESAS).

BD=CE

延長DBCEM,BDAE交于點N

∵△ABD≌△ACE,∴∠MEA=BDA

∵∠ENM=DNA,∴∠EMN=EAD

∵∠EAD90°,∴∠EMN90°,∴BDCE不成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的315日是國際消費者權(quán)益日,許多家居商城都會利用這個契機進行打折促銷活動.甲賣家的A商品成本為600元,在標(biāo)價1000元的基礎(chǔ)上打8折銷售.

1)現(xiàn)在甲賣家欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于20%

2)據(jù)媒體爆料,有一些賣家先提高商品價格后再降價促銷,存在欺詐行為.乙賣家也銷售A商品,其成本、標(biāo)價與甲賣家一致,以前每周可售出50件,現(xiàn)乙賣家先將標(biāo)價提高2m%,再大幅降價24m元,使得A商品在315日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了 m%,這樣一天的利潤達到了20000元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商以每千克30元的價格購進一批原材料加工后出售,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價x(元/千克)符合一次函數(shù)ykx+b,且x35時,y55;x42時,y48

1)求一次函數(shù)ykx+b的表達式;

2)設(shè)該商戶每天獲得的銷售利潤為W(元),求出利潤W(元)與銷售單價x(元/千克)之間的關(guān)系式;

3)銷售單價每千克定為多少元時,商戶每天可獲得最大利潤?最大利潤是多少元?(銷售利潤=銷售額﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 為倡導(dǎo)低碳生活,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔ACCD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2

1)求車架檔AD的長;

2)求車座點E到車架檔AB的距離.

(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259tan75°=3.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,的弦,且交于點,連接,若,則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天能售出20件,每件盈利40元。經(jīng)調(diào)查發(fā)現(xiàn):如果這種襯衫的售價每降低1元時,平均每天能多售出2.設(shè)每件襯衫降價x.

1)降價后,每件襯衫的利潤為_____元,銷量為_____件;(用含x的式子表示)

2)為了擴大銷售,盡快減少庫存,商場決定釆取降價措施。但需要平均每天盈利1200元,求每件襯衫應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個傾斜角為的斜坡的橫截面,.斜坡頂端B與地面的距離3米.為了對這個斜坡上的綠地進行噴灌,在斜坡底端安裝了一個噴頭A,噴頭A噴出的水珠在空中走過的曲線可以看作拋物線的一部分.設(shè)噴出水珠的豎直高度為y(單位:米)(水珠的豎直高度是指水珠與地面的距離),水珠與噴頭A的水平距離為x(單位:米),yx之間近似滿足函數(shù)關(guān)系a,b是常數(shù),),圖2記錄了xy的相關(guān)數(shù)據(jù).

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)斜坡上有一棵高1.8米的樹,它與噴頭A的水平距離為2米,通過計算判斷從A噴出的水珠能否越過這棵樹.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側(cè)取點A、B,使CAD=300CBD=600

(1)求AB的長(精確到0.1米,參考數(shù)據(jù):);

(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=2,BC=4,CDABC的中線,E是邊BC上一動點,將BED沿ED折疊,點B落在點F處,EF交線段CD于點G,當(dāng)DFG是直角三角形時,則CE=__________.

查看答案和解析>>

同步練習(xí)冊答案