(2010•蘇州)如圖,四邊形ABCD是正方形,延長(zhǎng)AB到E,使AE=AC,則∠BCE的度數(shù)是    度.
【答案】分析:根據(jù)正方形的性質(zhì),易知∠CAE=∠ACB=45°;等腰△CAE中,根據(jù)三角形內(nèi)角和定理可求得∠ACE的度數(shù),進(jìn)而可由∠BCE=∠ACE-∠ACB得出∠BCE的度數(shù).
解答:解:∵四邊形ABCD是正方形,
∴∠CAB=∠BCA=45°;
△ACE中,AC=AE,則:
∠ACE=∠AEC=(180°-∠CAE)=67.5°;
∴∠BCE=∠ACE-∠ACB=22.5°.
故答案為22.5.
點(diǎn)評(píng):此題主要考查的是正方形、等腰三角形的性質(zhì)及三角形內(nèi)角和定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省溫州市永嘉縣甌北鎮(zhèn)四校聯(lián)考九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省溫州市永嘉縣甌北二中九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•蘇州)如圖,以A為頂點(diǎn)的拋物線與y軸交于點(diǎn)B、已知A、B兩點(diǎn)的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(diǎn)(m、n為正整數(shù)),且它位于對(duì)稱軸的右側(cè).若以M、B、O、A為頂點(diǎn)的四邊形四條邊的長(zhǎng)度是四個(gè)連續(xù)的正整數(shù),求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,試問:對(duì)于拋物線對(duì)稱軸上的任意一點(diǎn)P,PA2+PB2+PM2>28是否總成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案