【題目】某事業(yè)單位組織全體職工參加了“抗擊疫情,服務社會”的活動為了了解單位職工參加活動情況,從單位職工中隨機抽取部分職工進行調(diào)查,統(tǒng)計了該天他們打掃街道、去敬老院服務和社區(qū)文藝演出的人數(shù),并繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息,回答下列問題:
本次抽樣調(diào)查共抽取了多少名單位職工?
通過計算補全條形統(tǒng)計圖;
若該事業(yè)單位共有名職工,請你估計該單位去敬老院的職工有多少名.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線的對稱軸是直線,且過點,頂點位于第二象限,其部分圖象如圖所示,給出以下判斷;①且;②;③;④;⑤直線與拋物線兩個交點的橫坐標分別為,則.其中結(jié)論正確是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了組織一個50人的旅游團開展“鄉(xiāng)間民俗”游,旅游團住村民家,住宿客房有三人間、二人間、單人間三種,收費標準是三人間每人每晚20元,二人間每人每晚30元,單人間每人每晚50元,旅游團共住20間客房.
(1)若單人間住了4間,且恰好將20間客房住滿,求三人間和二人間各入住多少間?
(2)設旅游團預定的房間中單人間有間,所需總的住宿費為,求關(guān)于的函數(shù)關(guān)系式;
(3)旅游團如何安排住宿才能夠使得住宿費最低?最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為2,A為圓內(nèi)一定點,AO=1.P為圓上一動點,以AP為邊作等腰△APG,AP=PG,∠APG=120°,OG的最大值為( 。
A.1+B.1+2C.2+D.2﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.
(1)梯形ABCD的面積等于 .
(2)如圖1,動點P從D點出發(fā)沿DC以DC以每秒1個單位的速度向終點C運動,動點Q從C點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā),當P點到達C點時,Q點隨之停止運動.當PQ∥AB時,P點離開D點多少時間?
(3)如圖2,點K是線段AD上的點,M、N為邊BC上的點,BM=CN=5,連接AN、DM,分別交BK、CK于點E、F,記△ ADG和△ BKC重疊部分的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點A(x1,1)、B(x2,﹣2)、C(x3,﹣3)在反比例函數(shù)y=﹣的圖象上,則x1、x2、x3的大小關(guān)系是( )
A.x1<x2<x3B.x1<x3<x2C.x3<x1<x2D.x2<x1<x3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=8,AD=10,E是CD邊上一點,連接AE,將矩形ABCD沿AE折疊,頂點D恰好落在BC邊上點F處,延長AE交BC的延長線于點G.
(1)求線段CE的長;
(2)如圖2,M,N分別是線段AG,DG上的動點(與端點不重合),且∠DMN=∠DAM,設AM=x,DN=y.
①寫出y關(guān)于x的函數(shù)解析式,并求出y的最小值;
②是否存在這樣的點M,使△DMN是等腰三角形?若存在,請求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC的平分線與AC的垂直平分線相交于點D,過點D作DF⊥BC,DG⊥AB,垂足分別為F、G.
(1)求證:AG=CF;
(2)若BG=5,AC=6,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】感知:如圖①,在正方形中,是一點,是延長線上一點,且,求證:;
拓展:在圖①中,若在,且,則成立嗎?為什么?
運用:如圖②在四邊形中,,,,是上一點,且,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com