【題目】如圖,直線 m,n 相交于 O,所夾的銳角是 53°,點 P,Q 分別是直線 m,n上的點,將直線 m,n 按照下面的程序操作,能使兩直線平行的是(

A. 將直線 m 以點 O 為中心,順時針旋轉(zhuǎn) 53° B. 將直線 n 以點 Q 為中心,順時針旋轉(zhuǎn) 53°

C. 將直線 m 以點 P 為中心,順時針旋轉(zhuǎn) 53° D. 將直線 m 以點 P 為中心,順時針旋轉(zhuǎn) 127°

【答案】C

【解析】

根據(jù)平行判定定理和性質(zhì)一一判定即可求解.

將直線 m 以點 O 為中心,順時針旋轉(zhuǎn) 53°,有交點不平行,故錯誤.

將直線 n 以點 Q 為中心,順時針旋轉(zhuǎn) 53°,有交點不平行,故錯誤.

將直線 m 以點 P 為中心,順時針旋轉(zhuǎn) 53°,平行,正確.

將直線 m 以點 P 為中心,順時針旋轉(zhuǎn) 127°,同位角不相等不平行,故錯誤.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,邊長為6,DBC邊上的動點,∠EDF=60°

1)求證:BDE∽△CFD;

2)當(dāng)BD=1,CF=3時,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCDAC平分∠BAD,CEADABE

1)求證:四邊形AECD是菱形;

2)若點EAB的中點,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)求證:方程總有實數(shù)根.

2)設(shè)這個方程的兩個實數(shù)根分別為,,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,,,上的一個動點,由運動(與不重合),速度為每秒延長線上一點,與點以相同的速度由延長線方向運動(不與重合),連結(jié)AB

1)如圖1,若,求點P運動幾秒后,.

2)在(1)的條件下,作F,在運動過程中,線段長度是否發(fā)生變化,如果不變,求出的長;如果變化,請說明理由.

3)如圖3,當(dāng)時,平行四邊形的面積是,那么在運動中是否存在某一時刻,點P,Q關(guān)于點E成中心對稱,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,AB4,ADBC邊上的中線,將△ABD繞點A旋轉(zhuǎn),使ABAC重合,連接DE,則線段DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,

1隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機(jī)地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人沿相同的路線由勻速行進(jìn),兩地間的路程為他們行進(jìn)的路程與甲出發(fā)后的時間之間的函數(shù)圖像如圖所示.根據(jù)圖像信息,下列說法正確的是(

A.甲的速度是B.乙的速度是

C.乙比甲晚出發(fā)D.甲比乙晚到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售AB兩種品牌的多媒體教學(xué)設(shè)備,這兩種多媒體教學(xué)設(shè)備的進(jìn)價和售價如表所示.

1)若該商場計劃購進(jìn)兩種多媒體教學(xué)設(shè)備若干套,共需124萬元,全部銷售后可獲毛利潤36萬元.則該商場計劃購進(jìn)A,B兩種品牌的多媒體教學(xué)設(shè)備各多少套?

2)通過市場調(diào)研,該商場決定在(1)中所購總數(shù)量不變的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量.若用于購進(jìn)這兩種多媒體教學(xué)設(shè)備的總資金不超過120萬元,且全部銷售后可獲毛利潤不少于33.6萬元.問有幾種購買方案?并寫出購買方案.

查看答案和解析>>

同步練習(xí)冊答案