【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),且PA=4,PB=,PC=2,以下五個(gè)結(jié)論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點(diǎn)P到△ABC三邊的距離分別為PE,PF,PG,則有 其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】B
【解析】
作BH⊥PC于H,根據(jù)等邊三角形的性質(zhì)得:BA=BC,∠ABC=60°,把△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,證明出△PBD為等邊三角形和△PCD為直角三角形即可求出①;根據(jù)平角性質(zhì),可得∠BPH=30°,證明△ABP為直角三角形,即可求出②和④;根據(jù)面積公式求出③;根據(jù)等面積法即可求出④.
作BH⊥PC于H
根據(jù)等邊三角形的性質(zhì)得:BA=BC,∠ABC=60°
把△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,連接PD得到上圖
根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=AP=4,BD=BP=,∠PBD=60°
∴△PBD為等邊三角形
∴PD=PB=,∠BPD=60°
在三角形PDC中,PC=2,PD= ,CD=4
∴PC2+PD2=CD2
∴△PCD為直角三角形,∠CPD=90°
∴∠BPC=∠BPD+∠CPB=150°,故①錯(cuò)誤;
根據(jù)平角性質(zhì),可得∠BPH=30°
在直角三角形PBH中,∵∠BPH=30°
∴PB=
∴BH=,則PH=3
CH=PC+PH=2+3=5
在直角三角形BCH中
,則,故④正確;
又∵
∴△ABP為直角三角形,∠APB=90°
∴∠APC=360°-∠APB-∠BPC=120°,故選項(xiàng)②正確;
,故選項(xiàng)③錯(cuò)誤;
∴,故選項(xiàng)⑤正確
故答案選擇:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠BOC=,∠AOC=100°,將△BOC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDA,連接OD.
(1) 求證:△BOD是等邊三角形.
(2) 當(dāng)=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由.
(3) 若△AOD是等腰三角形,請(qǐng)你直接寫(xiě)出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖所示,則下列結(jié)論:①k<0;②a>0;③當(dāng)x<3時(shí),y1<y2;④當(dāng)y1>0且y2>0時(shí),﹣a<x<4.其中正確的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:學(xué)習(xí)了分式運(yùn)算后,老師布置了這樣一道計(jì)算題:,甲、乙兩位同學(xué)的解答過(guò)程分別如下:
甲同學(xué):
①
②
③
④
乙同學(xué):
①
②
③
④
老師發(fā)現(xiàn)這兩位同學(xué)的解答過(guò)程都有錯(cuò)誤.
請(qǐng)你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過(guò)程,幫助他分析錯(cuò)因,并加以改正.
(1)我選擇________同學(xué)的解答過(guò)程進(jìn)行分析. (填“甲”或“乙”)
(2)該同學(xué)的解答從第________步開(kāi)始出現(xiàn)錯(cuò)誤(填序號(hào)),錯(cuò)誤的原因是________;
(3)請(qǐng)寫(xiě)出正確解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1各單位,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)△ABC的頂點(diǎn)A,B的坐標(biāo)分別為(1,4),(﹣3,1).
(1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)作出符合上述表述的平面直角坐標(biāo)系;
(2)請(qǐng)你將A、B、C的橫坐標(biāo)不變,縱坐標(biāo)乘以﹣1所得到的點(diǎn)A1、B1、C1描在坐標(biāo)系中,并畫(huà)出△A1B1C1,其中點(diǎn)C1的坐標(biāo)為 .
(3)△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:已知方程x2+x﹣3=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x.所以x=.
把x=代入已知方程,得()2+﹣3=0,化簡(jiǎn),得y2+2y﹣12=0.
故所求方程為y2+2y﹣12=0.
這種利用方程根的代換求新方程的方法,我們稱(chēng)為“換根法”.
問(wèn)題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的3倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若要建一個(gè)長(zhǎng)方形雞場(chǎng),雞場(chǎng)的一邊靠墻,墻對(duì)面有一個(gè)2米寬的門(mén),另三邊用竹籬笆圍成,籬笆總長(zhǎng)33米,圍成長(zhǎng)方形的雞場(chǎng)除門(mén)之外四周不能有空隙.求:
(1)若墻長(zhǎng)為18米,要圍成雞場(chǎng)的面積為150平方米,則雞場(chǎng)的長(zhǎng)和寬各為多少米?
(2)圍成雞場(chǎng)的面積可能達(dá)到200平方米嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點(diǎn)M旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為M′,當(dāng)AM′+DM取得最小值時(shí),點(diǎn)M的坐標(biāo)為( 。
A. (0, ) B. (0,) C. (0,) D. (0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B、C三點(diǎn)在同一直線上,分別以AB、BC為邊,在直線AC的同側(cè)作等邊△ABD和等邊△BCE,連接AE交BD于點(diǎn)M,連接CD交BE于點(diǎn)N,連接MN得△BMN.
(1)求證:AE=CD;
(2)試判斷△BMN的形狀,并說(shuō)明理由;
(3)設(shè)CD、AE相交于點(diǎn)G,求∠AGC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com