如圖,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,將BC向BA方向翻折過去,使點C落在BA上的點C′,折痕為BE,則EC的長度是
.
.
試題分析:作ED⊥BC于D,可得含30°的Rt△CED及含45°的直角三角形BED,設(shè)所求的EC為x,則CD=0.5x,BD=ED=
,根據(jù)BC=5列式求值即可.
試題解析:作ED⊥BC于D,由折疊的性質(zhì)可知∠DBE=∠ABE=45°,
設(shè)所求的EC為x,則CD=
x,BD=ED=
,
∵∠ABC=90°,∠C=60°,AC=10,
∴BC=AC×cosC=5,
∵CD+BD=5,
∴
.
考點: 翻折變換(折疊問題).
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B處的仰角為30º,看這棟高樓底部C處的俯角為60º,若熱氣球與高樓的水平距離為90 m,則這棟高樓有多高?(結(jié)果保留整數(shù),
≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,浦西對岸的高樓
,在
處測得樓頂
的仰角為30°,向高樓前進100米到達
處,在
處測得
的仰角為45°,求高樓
的高.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,則AC=( )
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
已知,Rt△ABC的周長為4+2
,斜邊AB的長為2
,則Rt△ABC的面積為________________.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,在△ABC中,AB=AC,BC=8,tanC=
,如果將△ABC沿直線l翻折后,點B落在邊AC的中點處,直線l與邊BC交于點D,那么BD的長為
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,小麗想知道自家門前小河的寬度,于是她按以下辦法測出了如下數(shù)據(jù):小麗在河岸邊選取點A,在點A的對岸選取一個參照點C,測得∠CAD=30°;小麗沿岸向前走30 m選取點B,并測得∠CBD=60°.請根據(jù)以上數(shù)據(jù),用你所學(xué)的數(shù)學(xué)知識,幫小麗計算小河的寬度.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
在△ABC中,∠A,∠B都是銳角,且sinA=
,cosB=
,則△ABC的形狀是
A.直角三角形 | B.鈍角三角形 | C.銳角三角形 | D.不能確定 |
查看答案和解析>>