【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸的兩個(gè)交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對(duì)稱軸與拋物線交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)E,F(xiàn)分別是拋物線對(duì)稱軸CH上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)F上方),且EF=1,求使四邊形BDEF的周長最小時(shí)的點(diǎn)E,F(xiàn)坐標(biāo)及最小值;
(3)如圖2,點(diǎn)P為對(duì)稱軸左側(cè),x軸上方的拋物線上的點(diǎn),PQ⊥AC于點(diǎn)Q,是否存在這樣的點(diǎn)P使△PCQ與△ACH相似?若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說明理由.
【答案】(1)y=﹣x2﹣2x+3(2)故四邊形BDEF的周長最小時(shí),點(diǎn)E的坐標(biāo)為(﹣1, ),點(diǎn)F坐標(biāo)為(﹣1, ),四邊形BDEF周長的最小值是+1+;(3)點(diǎn)P的坐標(biāo)為(﹣, )
【解析】試題分析:(1)將點(diǎn)A(-3,0)、B(1,0)代入拋物線的解析式得到關(guān)于a、b的方程組即可;
(2)先求得C(-1,4).將D點(diǎn)向下平移1個(gè)單位,得到點(diǎn)M,連結(jié)AM交對(duì)稱軸于F,作DE∥FM交對(duì)稱軸于E點(diǎn),則四邊形BDEF周長的最小值=BD+EF+AM,然后求得直線AM的解析式,從而可求得點(diǎn)F的坐標(biāo),最后依據(jù)EF=1可得到點(diǎn)E的坐標(biāo);
(3)當(dāng)△PCQ∽△ACH時(shí),∠PCQ=∠ACH.過點(diǎn)A作CA的垂線交PC與點(diǎn)F,作FN⊥x軸與點(diǎn)N.則AF∥PQ,先證明△CPQ∽△CFA、△FNA∽△AHC,依據(jù)相似三角形的性質(zhì)可求得AN=2,FN=1,則F(-5,1),然后再求得直線CF的解析式,將CF的解析式與拋物線的解析式聯(lián)立組成方程組可求得點(diǎn)P的坐標(biāo).
試題解析:
(1)解:∵拋物線y=ax2+bx+3過點(diǎn)A(﹣3,0),B(1,0),
∴,解得 ,
∴拋物線的解析式為y=﹣x2﹣2x+3
(2)解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴頂點(diǎn)C(﹣1,4).
將D點(diǎn)向下平移1個(gè)單位,得到點(diǎn)M,連結(jié)AM交對(duì)稱軸于F,作DE∥FM交對(duì)稱軸于E點(diǎn),如圖1所示.
∵EF∥DM,DE∥FM,
∴四邊形EFMD是平行四邊形,
∴DE=FM,EF=DM=1,
DE+FB=FM+FA=AM.
由勾股定理,得AM= = = ,
BD== = ,
四邊形BDEF周長的最小值=BD+DE+EF+FB=BD+EF+(DE+FB)=BD+EF+AM= +1+ ;
設(shè)AM的解析式為y=mx+n,將A(﹣3,0),M(0,2)代入,解得m=,n=2,則AM的解析式為y= x+2,
當(dāng)x=﹣1時(shí),y=,即F(﹣1, ),
由EF=1,得E(﹣1, ).
故四邊形BDEF的周長最小時(shí),點(diǎn)E的坐標(biāo)為(﹣1, ),點(diǎn)F坐標(biāo)為(﹣1, ),四邊形BDEF周長的最小值是 +1+ ;
(3)解:點(diǎn)P在對(duì)稱軸左側(cè),當(dāng)△PCQ∽△ACH時(shí),∠PCQ=∠ACH.
過點(diǎn)A作CA的垂線交PC與點(diǎn)F,作FN⊥x軸與點(diǎn)N.則AF∥PQ,
∴△CPQ∽△CFA,
∴= =2.
∵∠CAF=90°,
∴∠NAF+∠CAH=90°,∠NFA+∠NAF=90°,
∴∠BFA=∠CAH.
又∵∠FNA=∠AHC=90°,
∴△FNA∽△AHC,
∴== =,即 = =.
∴AN=2,FN=1.
∴F(﹣5,1).
設(shè)直線CF的解析式為y=kx+b,將點(diǎn)C和點(diǎn)F的坐標(biāo)代入得: ,解得:k= ,b= .
∴直線CF的解析式為y= x+ .
將y= x+ 與y=﹣x2﹣2x+3聯(lián)立得: ,
解得: 或 (舍去).
∴P(﹣, ).
∴滿足條件的點(diǎn)P的坐標(biāo)為(﹣, ).
點(diǎn)睛: 本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式、相似三角形的性質(zhì)和判定、軸對(duì)稱的性質(zhì),找出四邊形BDEF周長取得最小值的條件是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(4,2),反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形的對(duì)稱中點(diǎn)E,且與邊BC交于點(diǎn)D,若過點(diǎn)D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,則此直線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D的切線交BC于點(diǎn)E.
(1)求證:DE=BC;
(2)若四邊形ODEC是正方形,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一邊長為36cm的正方形硬紙板進(jìn)行適當(dāng)?shù)募舨茫鄢梢粋(gè)長方體盒子(紙板的厚度忽略不計(jì))
(1)如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無蓋的長方體盒子.
①要使折成的長方體盒子的底面積為676cm2,那么剪掉的正方形的邊長為多少?
②折成的長方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長;如果沒有,說明理由.
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個(gè)有蓋的長方體盒子,若折成的一個(gè)長方體盒子的表面積為880cm2,求此時(shí)長方體盒子的長、寬、高(只需求出符合要求的一種情況)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖1的長為,寬為b的小長方形紙片,按如圖2、3的方式不重疊地放在 矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.
(1)如圖2,點(diǎn)E、Q、P在同一直線上,點(diǎn)F、Q、G在同一直線上,右下角與左上角的陰影部分的面積的差為____________(用含、的代數(shù)式表示),矩形ABCD的面積為____________(用含、的代數(shù)式表示);
(2)如圖3,點(diǎn)F、H、Q、G在同一直線上,設(shè)右下角與左上角的陰影部分的面積的差為S,.
①用、、的代數(shù)式表示AE;
②當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,那么、必須滿足什么條件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AP,BP分別平分∠DAB和∠CBA,交于DC邊上點(diǎn)P,AD=5.
(1)求線段AB的長.
(2)若BP=6,求△ABP的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF,
(1)求證:AE=CF;
(2)若AB=3,∠AOD=120°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60米的點(diǎn)D(點(diǎn)D與樓底C在同一水平上)出發(fā),沿斜面坡度為i=l: 的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測得樓頂A的仰角為53,求樓房AC的高度(參考數(shù)據(jù):sin53=, cos53=, tan53=, ≈1.732,結(jié)果精確到0.1米)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com