如圖,E為平行四邊形ABCD內(nèi)一點,且EA=EB=EC,若∠D=50°,則∠AEC的度數(shù)是


  1. A.
    90°
  2. B.
    95°
  3. C.
    100°
  4. D.
    110°
C
分析:由平行四邊形ABCD中,∠D=50°,可求得∠ABC的度數(shù),又由EA=EB=EC,根據(jù)等邊對等角的性質(zhì),可求得∠EAB+∠ECB=∠EBA+∠EBC=∠ABC=50°,繼而求得∠AEB+∠BEC,則可求得∠AEC的度數(shù).
解答:∵四邊形ABCD是平行四邊形,
∴∠ABC=∠D=50°,
∵EA=EB=EC,
∴∠EAB=∠EBA,∠EBC=∠ECB,
∴∠EAB+∠ECB=∠EBA+∠EBC=∠ABC=50°,
∴∠AEB+∠BEC=(180°-∠EAB-∠EBA)+(180°-∠EBC-∠ECB)=360°-(∠EAB+∠ECB+∠EBA+∠EBC)=360°-100°=260°,
∴∠AEC=360°-∠AEB-∠BEC=100°.
故選C.
點評:此題考查了平行四邊形的性質(zhì)與等腰三角形的性質(zhì).此題難度適中,注意數(shù)形結(jié)合思想與整體思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,E為平行四邊形ABCD中BC邊的中點,AE交對角線BD于G,如果△BEG的面積是1,則平行四邊形ABCD的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD為平行四邊形,以BC為直徑的⊙O經(jīng)過點A,∠D=60°,BC=2,一動點P在AD上移動,過點P作直線AB的垂線,分別交直線AB、CD于E、F,設(shè)點O到EF的距離為t,若B、P、F三點能構(gòu)成三角形,設(shè)此時△BPF的面積為S.
(1)計算平行四邊形ABCD的面積;
(2)求S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)△BPF的面積存在最大值嗎?若存在,請求出這個最大值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖:M為平行四邊形ABCD的BC邊的中點,AM交BD于點P,若PM=4,則AP=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安徽)如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,△PEF、△PDC、△PAB的面積分別為S、S1、S2,若S=2,則S1+S2=
8
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知|2011-x|+
x-2012
=x+1,求x-20122的值.
(2)如圖,P為平行四邊形ABCD內(nèi)一點,過點P分別作AB、AD的平行線交平行四邊形于E、F、G、H四點,若SAHPE=3,SPFCG=6,則S△PBD的值.

查看答案和解析>>

同步練習冊答案