【題目】某校為了加強(qiáng)和改進(jìn)學(xué)校體育工作,切實(shí)提高學(xué)生體質(zhì)健康水平,決定開展“陽光體育”活動,現(xiàn)對全校學(xué)生感興趣的球類項(xiàng)目(表示足球,表示籃球,表示排球,表示羽毛球,表示乒乓球)進(jìn)行問卷調(diào)查,學(xué)生可根據(jù)自己的喜好選修一門,張老師對某班全班同學(xué)的選課情況進(jìn)行統(tǒng)計(jì)后,制成了兩幅不完整的統(tǒng)計(jì)圖(部分信息未給出).
(1)求該班級學(xué)生的總?cè)藬?shù);
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1500名,請估計(jì)有多少人選修足球?
【答案】(1)50人;(2)見解析;(3)600人
【解析】
(1) 根據(jù)喜歡籃球的人數(shù)除以喜歡籃球的人數(shù)所占的百分比,可得到答案.
(2) 根據(jù)全班人數(shù)乘以C類百分比,可得C類的人數(shù),,根據(jù)有理數(shù)的加減,可得A類的人數(shù),可得到答案.
(3)全校人數(shù)乘以喜歡足球人數(shù)所占百分比,可得到答案.
(1)由統(tǒng)計(jì)圖可知對籃球感興趣的人數(shù)是8人,所占的比例是16%,
所以該班級學(xué)生的總?cè)藬?shù):(人).
(2)由(1)知道,該班級學(xué)生總?cè)藬?shù)是50人,
∴的人數(shù):(人),
∴的人數(shù):(人),
因此的人數(shù):(人),
所占的百分比:,
所占的百分比:,
完整的統(tǒng)計(jì)圖如下:
(3)根據(jù)(2)可知,足球所占比例為,由樣本估計(jì)總體可得,該校1500名學(xué)生中選擇足球的有:
(人),
因此,估計(jì)有600人選修足球.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A、B,與y軸交于點(diǎn)C.過點(diǎn)A作AD⊥x軸于點(diǎn)D,AD=2,∠CAD=45°,連接CD,已知△ADC的面積等于6.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(diǎn)E是點(diǎn)C關(guān)于x軸的對稱點(diǎn),求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是小安填寫的數(shù)學(xué)實(shí)踐活動報(bào)告的部分內(nèi)容
題 目 | 測量鐵塔頂端到地面的高度 | |
測量目標(biāo)示意圖 | ||
相關(guān)數(shù)據(jù) | CD=20m,ɑ=45°,β=52° |
求鐵塔的高度FE(結(jié)果精確到1米)(參考數(shù)據(jù):sin52°≈0.79, cos52°≈0.62,tan52°≈1.28)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)P(m,n)是線段AD上的動點(diǎn).
(1)求直線AD及拋物線的解析式;
(2)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長度l與m的關(guān)系式,m為何值時(shí),PQ最長?
(3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P,Q,D,R為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.
①線段DG與BE之間的數(shù)量關(guān)系是 ;
②直線DG與直線BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時(shí),上述結(jié)論是否成立,并說明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知和均為的等邊三角形,點(diǎn)為的中點(diǎn),過點(diǎn)與平行的直線交射線于點(diǎn).
(1)當(dāng),,三點(diǎn)在同一直線上時(shí)(如圖1),求證:為中點(diǎn);
(2)將圖1中的繞點(diǎn)旋轉(zhuǎn),當(dāng),,三點(diǎn)在同一直線上時(shí)(如圖2),求證:為等邊三角形;
(3)將圖2中繞點(diǎn)繼續(xù)順時(shí)針旋轉(zhuǎn)多少度時(shí),點(diǎn)恰好第一次位于線段中點(diǎn),試作出圖形并直接寫出繞點(diǎn)繼續(xù)旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x﹣3與雙曲線y=(k>0)交于A、B兩點(diǎn),點(diǎn)A的縱坐標(biāo)為1.
(1)求點(diǎn)B的坐標(biāo);
(2)直接寫出當(dāng)x在什么范圍內(nèi)時(shí),代數(shù)式x2﹣3x的值小于k的值;
(3)點(diǎn)C(2,m)是直線AB上一點(diǎn),點(diǎn)D(n,4)是雙曲線y=上一點(diǎn),將△OCD沿射線BA方向平移,得到△O′C′D′.若點(diǎn)O的對應(yīng)點(diǎn)O′落在雙曲線y=上,求點(diǎn)D的對應(yīng)點(diǎn)D′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,E,F是對角線BD上的兩點(diǎn), 如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com