【題目】計算: .
【答案】解:原式=1+ ﹣1﹣ ﹣2× +1
= ﹣ ﹣ +1
=1﹣ .
【解析】直接利用絕對值的性質(zhì)以及特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質(zhì)化簡,進而求出答案.此題主要考查了實數(shù)運算,正確記憶特殊角的三角函數(shù)值是解題關(guān)鍵.
【考點精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
科目:初中數(shù)學 來源: 題型:
【題目】“漢十”高速鐵路襄陽段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的 ,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 對于以下結(jié)論:
①abc>0;②a+3b+2c≤0;③對于自變量x的任意一個取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一個實數(shù)x0 , 使得x0=﹣ ,
其中結(jié)論錯誤的是 (只填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,拋物線y=ax2+1經(jīng)過點A(4,﹣3),頂點為點B,點P為拋物線上的一個動點,l是過點(0,2)且垂直于y軸的直線,過P作PH⊥l,垂足為H,連接PO.
(1)求拋物線的解析式,并寫出其頂點B的坐標;
(2)①當P點運動到A點處時,計算:PO= , PH= , 由此發(fā)現(xiàn),POPH(填“>”、“<”或“=”);
②當P點在拋物線上運動時,猜想PO與PH有什么數(shù)量關(guān)系,并證明你的猜想;
(3)如圖2,設(shè)點C(1,﹣2),問是否存在點P,使得以P,O,H為頂點的三角形與△ABC相似?若存在,求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】實施素質(zhì)教育以來,某中學立足于學生的終身發(fā)展,大力開發(fā)課程資源,在七年級設(shè)立六個課外學習小組,下面是七年級學生參加六個學習小組的統(tǒng)計表和扇形統(tǒng)計圖,請你根據(jù)圖表中提供的信息回答下列問題.
學習小組 | 體育 | 美術(shù) | 科技 | 音樂 | 寫作 | 奧數(shù) |
人數(shù) | 72 | 36 | 54 | 18 |
(1)七年級共有學生 人;
(2)在表格中的空格處填上相應(yīng)的數(shù)字;
(3)表格中所提供的六個數(shù)據(jù)的中位數(shù)是 ;
(4)眾數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個兩位數(shù)恰等于它的各位數(shù)字之和的倍,則這個兩位數(shù)稱為“巧數(shù)”.不是“巧數(shù)”的兩位數(shù)有______個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB∥CD,∠ABE與∠CDE兩個角的角平分線相交于點F.
(1)如圖1,若∠E=80°,求∠BFD的度數(shù).
(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,試寫出∠M與∠E之間的數(shù)量關(guān)系并證明你的結(jié)論.
(3)若∠ABM=∠ABF,∠CDM=∠CDF,∠E=m°,請直接用含有n,m°的代數(shù)式表示出∠M.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師請同學思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題是,有如下思路:連接AC.
結(jié)合小敏的思路作答
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由;參考小敏思考問題方法解決一下問題:
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結(jié)論并證明;
②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com