【題目】如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點A,C的坐標分別為(2,0),(0,2),D是x軸正半軸上的一點(點D在點A的右邊),以BD為邊向外作正方形BDEF(E,F(xiàn)兩點在第一象限),連接FC交AB的延長線于點G.若反比例函數(shù)的圖象經過點E,G兩點,則k的值為 ______________

【答案】5

【解析】分析: FFN垂直于x,CB延長線于點M,利用AAS得到三角形ABD與三角形BMF全等, 利用全等三角形對應邊相等得到AD=FM,進而表示出F坐標, 根據(jù)BCM中點,得出GCF中點,表示出G坐標,進而得出E坐標, GE代入反比例解析式求出a的值,確定出E坐標,代入反比例解析式求出k的值即可.

詳解: FFNx,CB的延長線于點M,EEH⊥x,x軸于點H,

∵∠FBM+∠MBD=90°,∠MBD+∠ABD=90°,

∴∠FBM=ABD,

∵四邊形BDEF為正方形,

BF=BD,

在△ABD和△BMF,

BAD=∠BMF,ABD=∠MFB,BD=BF,

∴△ABD≌△BMF(AAS),

AD=FM=a,則有F(4,2+a),C(0,2),

由三角形中位線可得GCF的中點,

G(2,2+12a),同理得到△DHE≌△BAD,

EH=AD=a,OH=OA+AD+DH=4+a,

E(4+a,a),∴2(2+12a)=a(4+a),a2+3a-4=0,解得:a=1a=-4(舍去),

∴E(5,1),

F代入反比例解析式得:k=5.

故答案為:5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側一點,且AB=22,動點PA點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t(t>0)秒.

(1)數(shù)軸上點B表示的數(shù)   ;點P表示的數(shù)   (用含t的代數(shù)式表示)

(2)MAP的中點,NBP的中點,在點P運動的過程中,線段MN的長度是   

(3)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,若點P、Q同時出發(fā),問多少秒時P、Q之間的距離恰好等于2?

(4)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩城相距600千米,一輛客車從A城開往B城,車速為每小時80千米,同時一輛出租車從B城開往A城,車速為毎小時100千米,設客車出時間為t.
(1)【探究】 若客車、出租車距B城的距離分別為y1、y2 , 寫出y1、y2關于t的函數(shù)關系式,并計算當y1=200千米時y2的値.
(2)【發(fā)現(xiàn)】 設點C是A城與B城的中點,
(Ⅰ)哪個車會先到達C?該車到達C后再經過多少小時,另一個車會到達C?
(Ⅱ)若兩車扣相距100千米時,求時間t.
(3)【決策】 己知客車和出租車正好在A,B之間的服務站D處相遇,此時出租車乘客小王突然接到開會通知,需要立即返回,此時小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車,到達A城后立刻返回B城(設出租車調頭時間忽略不計);
方案二:乘坐客車返回城.
試通過計算,分析小王選擇哪種方式能更快到達B城?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,DE∥BC,交AB于點E,DF∥AB,交BC于點F,當△ABC滿足_________條件時,四邊形BEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C為AB延長線上一點,動點P從點A出發(fā)沿AC方向以lcm/s的速度運動,同時動點Q從點C出發(fā)以相同的速度沿CA方向運動,當兩點相遇時停止運動,過點P作AB的垂線,分別交⊙O于點M和點N,已知⊙O的半徑為l,設運動時間為t秒.
(1)若AC=5,則當t=時,四邊形AMQN為菱形;當t=時,NQ與⊙O相切;
(2)當AC的長為多少時,存在t的值,使四邊形AMQN為正方形?請說明理由,并求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正比例函數(shù)與反比例函數(shù)的圖象交于A,B兩點,A點的橫坐標為2,AC⊥x軸于點C,連接BC

1)求反比例函數(shù)的解析式;

2)若點P是反比例函數(shù)圖象上的一點,且滿足△OPC△ABC的面積相等,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角∠O的內部有一滑動桿AB,當端點A沿直線AO向下滑動時,端點B會隨之自動地沿直線OB向左滑動,如果滑動桿從圖中AB處滑動到A′B′處,那么滑動桿的中點C所經過的路徑是(
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊三角形ABC的邊長為2,E、F、G分別是邊AB、BC、CA的點,且AE=BF=CG,設△EFG的面積為y,AE的長為x,則y與x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設運動時間為t(s)(0<t<4),解答下列問題:

(1)設△APQ的面積為S,當t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當四邊形PQP′C為菱形時,求t的值;′
(3)當t為何值時,△APQ是等腰三角形?

查看答案和解析>>

同步練習冊答案