【題目】如圖,在平面直角坐標系中,直線y=﹣x+3與拋物線 交于A、B兩點,點A在x軸上,點B的橫坐標為 .動點P在拋物線上運動(不與點A、B重合),過點P作y軸的平行線,交直線AB于點Q.當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點P的橫坐標為m.
(1)求b、c的值.
(2)當點N落在直線AB上時,直接寫出m的取值范圍.
(3)當點P在A、B兩點之間的拋物線上運動時,設(shè)正方形PQMN的周長為C,求C與m之間的函數(shù)關(guān)系式,并寫出C隨m增大而增大時m的取值范圍.
(4)當△PQM與坐標軸有2個公共點時,直接寫出m的取值范圍.
【答案】
(1)解:∵直線y=﹣x+3與x軸相交于點A,
∴A(3,0),
∵點B在直線y=﹣x+3上,且B的橫坐標為﹣ ,
∴B(﹣ , ),
∵A,B在拋物線上,
∴ ,
∴
(2)解:方法1、由(1)知,b= ,c= ,
∴拋物線的解析式為y=﹣ x2+ x+ ,
設(shè)P(m,﹣ m2+ m+ ),
∵點Q在直線y=﹣x+3上,
∴Q(m,﹣m+3),
∵點N在直線AB上,
∴N(( m2﹣ m﹣ ),(﹣ m2+ m+ )),
∴PN=| m2﹣ m﹣ ﹣m|=| m2﹣ m﹣ |
∴PQ=|﹣ m2+ m+ ﹣(﹣m+3)|=|﹣ m2+ m+ |,
∵四邊形PQMN時正方形,
∴PN=PQ,
∴| m2﹣ m﹣ |=|﹣ m2+ m+ |,此時等式恒成立,
當m<0且m≠﹣ 時,
∵MN與y軸在PQ的同側(cè),
∴點N在點P右側(cè),
∴ m2﹣ m﹣ >m,
∴m<﹣ ,
當m>0且m≠3時,
∵MN與y軸在PQ的同側(cè),
∴點P在點N的右側(cè),
∴ m2﹣ m﹣ <m,
∴﹣ <m<3,
∴0<m<3,
即:m的范圍為m<﹣ 或0<m<3;
方法2、如圖,
記直線AB與y軸的交點為D,
∵直線AB的解析式為y=﹣x+3,
∴D(0,3),
∴OD=3,
∵A(3,0),
∴OA=3,
∴OA=OB,
∴∠ODA=45°,
∵PQ∥y軸,
∴∠PQB=45°,
記:直線PN交直線AB于N',
∵四邊形PQMN是正方形,
∴∠QPN=90°,
∴∠PN'Q=45°=∠PQN',
∴PQ=PN',
∵四邊形PQMN是正方形,
∴PQ=PN,
點N在點P的左側(cè)時,點N'都在直線AB上,
∵MN與y軸在PQ的同側(cè),
∴m的范圍為m<﹣ 或0<m<3
(3)解:由(1)知,b= ,c= ,
∴拋物線的解析式為y=﹣ x2+ x+ ,
設(shè)P(m,﹣ m2+ m+ ),
∵點Q在直線y=﹣x+3上,
∴Q(m,﹣m+3),
∴PQ=|﹣ m2+ m+ ﹣(﹣m+3)|=|﹣ m2+ m+ |,
∵點P在點A,B之間的拋物線上,
∴PQ=﹣ m2+ m+ ,(﹣ <m<3且m≠0),
∵設(shè)正方形PQMN的周長為C,
∴C=4PQ=4(﹣ m2+ m+ )=﹣2m2+ m+2=﹣2(m﹣ )2+ ,
∵C隨m增大而增大,
∴m< ,
∴﹣ <m< 且m≠0
(4)解:當△PQM與坐標軸有2個公共點時,
∴m<0或0<m<3
當0<m<3,PN>yP,
由(2)知,P(m,﹣ m2+ m+ ),PQ=|﹣ m2+ m+ |=﹣ m2+ m+
∵四邊形PQMN是正方形,
∴PN=PQ=﹣ m2+ m+ >﹣ m2+ m+ ,
∴m>3,所以,此種情況不符合題意;
當m<0時,PN>yP,
∵PQ= m2﹣ m﹣ ,
∵四邊形PQMN是正方形,
∴PN=PQ= m2﹣ m﹣ >﹣ m2+ m+ ,
∴m>3(舍)或m<﹣ ,
即:當△PQM與坐標軸有2個公共點時,m<﹣
【解析】(1)先確定出點A,B的坐標,最后用待定系數(shù)法即可得出結(jié)論。
(2)點P在拋物線上,點Q在直線y=﹣x+3上,點N在直線AB上,設(shè)出點P的坐標,再表示出Q、N的坐標,即可得出PN=PQ,再用MN與y軸在PQ的同側(cè),建立不等式即可得出結(jié)論。
(3)點P在點A,B之間的拋物線上,根據(jù)(2)可知PQ的長,設(shè)正方形PQMN的周長為C,根據(jù)C=4PQ,建立C與m的函數(shù)關(guān)系式,求出其頂點坐標,根據(jù)二次函數(shù)的性質(zhì),即可求得結(jié)論。
(4)分兩種情況討論計算即可求出結(jié)論。
【考點精析】掌握一次函數(shù)的性質(zhì)和二次函數(shù)的最值是解答本題的根本,需要知道一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸交于點A(﹣1,0)、B(4,0),與y軸交于點C.
(1)a=;b=;
(2)點P為該函數(shù)在第一象限內(nèi)的圖象上的一點,過點P作PQ⊥BC于點Q,連接PC.
①求線段PQ的最大值;
②若以P、C、Q為頂點的三角形與△ABC相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以邊AB上的一點O為圓心,以O(shè)A的長為半徑的圓交邊AB于點D,BC與⊙O相切于點C.若⊙O的半徑為5,∠A=20°,則 的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、圖②是8×5的正方形網(wǎng)格,線段AB、BC的端點均在格點上.按要求在圖①、圖②中以AB、BC為鄰邊各畫一個四邊形ABCD,使點D在格點上.要求所畫兩個四邊形不全等,且同時滿足四邊形ABCD是軸對稱圖形,點D到∠ABC兩邊的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張師傅開車到某地送貨,汽車出發(fā)前油箱中有油50升,行駛一段時間,張師傅在加油站加油,然后繼續(xù)向目的地行駛.已知加油前、后汽車都勻速行駛,汽車行駛時每小時的耗油量一定.油箱中剩余油量Q(升)與汽車行駛時間t(時)之間的函數(shù)圖象如圖所示.
(1)張師傅開車行駛小時后開始加油,本次加油升.
(2)求加油前Q與t之間的函數(shù)關(guān)系式.
(3)如果加油站距目的地210千米,汽車行駛速度為70千米/時,張師傅要想到達目的地,油箱中的油是否夠用?請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若AB∥CD,EF與AB 、CD分別相交于E、F,EP⊥EF,∠EFD的平分線與EP相交于點P,且∠BEP=40°,求∠EFP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是( )
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對七、八、九年級的學生進行體育水平測試,成績評定為優(yōu)秀、良好、合格、不合格四個等第.為了解這次測試情況,學校從三個年級隨機抽取200名學生的體育成績進行統(tǒng)計分析.相關(guān)數(shù)據(jù)的統(tǒng)計圖、表如下:
各年級學生成績統(tǒng)計表 | ||||
優(yōu)秀 | 良好 | 合格 | 不合格 | |
七年級 | a | 20 | 24 | 8 |
八年級 | 29 | 13 | 13 | 5 |
九年級 | 24 | b | 14 | 7 |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,a的值為 , b的值為;
(2)在扇形統(tǒng)計圖中,八年級所對應(yīng)的扇形圓心角為度;
(3)若該校三個年級共有2000名學生參加考試,試估計該校學生體育成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某村為了盡早擺脫貧窮落后的現(xiàn)狀,積極響應(yīng)國家號召,15位村民集資8萬元,承包了一些土地種植有機蔬菜和水果,種這兩種作物每公頃需要人數(shù)和投入資金如下表:
作物種類 | 每公頃所需人數(shù)/人 | 每公頃投入資金/萬元 |
蔬菜 | 4 | 2 |
水果 | 5 | 3 |
在現(xiàn)有條件下,這15位村民應(yīng)承包多少公頃土地,怎樣安排能使每人都有事可做,并且資金正好夠用?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com